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The Fourier coefficients Dh of a hypersection of the double Patterson function at a fixed value of U can 
be written as 

Dh=(1/V) ~.h, FhFh, Fh--T-fiT- COS 27rh'. U/cos 2zrh. (U/2). 

It is shown that also D h = FhGh, where G h is the Fourier coefficient of a reduced structure derived from 
the original structure by positioning an atom with form factor ~h,jS(h')f~(h+ h') halfway in between 
those atoms i and j, which are a vector U apart. If U is a single vector between two atoms with form 
factor f(h), then the reduced structure contains only one atom, at the origin, and Gh = (1/V) ~h,f(h') 
f (h + h'). We obtain the relation ~h, FhFh, F~¥~ cos 2rch'. U/[cos 2zrh. (U/2) ~.h,f(h')f(h + h')] = F h. Using 
this formula with probabilities for the signs of the triple products, the single vectors U are found by a 
scanning process, as we demonstrate on a heavy atom structure. The signs of the structure factors have 
thus been calculated directly from the triple products. 

Introduction 

The double Pat terson function (Sayre, 1953) is defined 
as T(U, V)---- S 0(r)Q(r + U)~o(r + V)dr. Its Fourier  coef- 
ficients are the triple products FhFh,Fh--4F , divided by 
V 2. Hypersections* of  this six-dimensional function 
can be synthesized because the phases of  triple prod- 
ucts show a tendency towards zero. A hypersection at 
a fixed value of  U contains the structure once if U 
corresponds to a single Pat terson vector (Hoppe,  1957) 
and twice if U is a double Pat terson vector, etc. 

* In this paper a coset of the subspace U =0 (or V = 0) is 
called a hypersection. 

In this paper  we relate the Fourier  coefficient F h of  
a centrosymmetric structure to the Fourier  coefficients 
of  a Hoppe  section. This leads to a relation between 
Fn, triple products and a single Pat terson vector U. 
By scanning U through the asymmetric unit of  the 
Pat terson spacer we expect to find the positions of  the 
single peaks, and the signs of  Fh, at values of  U where 

1" Each peak in the linear subspace U = 0  or V=0 of the 
double Patterson function corresponds to a peak with the same 
position but not the same height in the Patterson function. 
For this reason we will refer to such a linear subspace as a 
Patterson space. 
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the disagreement factor, between left- and right-hand 
sides of the equations, attains a minimum value.* 

Fourier coefficients of a hypersection of the 
double Patterson 

The double Patterson function 

where the summation ~ '  is restricted over terms con- 
taining independent coefficients Zhh'. Now 

2 cos 2zc[h'. U + h .  (U/2)] 

cos 2zr(h + h ' ) .  U + cos 27rh'. U 
. . . . . . . . . . . . . .  

cos 2zc[h. (U/2)]. 

T(U, V ) -  IQ(r)~o(r + U)Q(r + V)dr 

can be written as 

2 ~  +~ 
T ( U , V ) = - ~  

h=O h'=--oo 
Thh, COS 27r(h'. U + h .  V) (1) 

for a centrosymmetrical structure, where Thht-~ 
FhFh, Fh--'~ and h(h, k, l) and h'(h', k', l') are reciprocal 
lattice vectors. 

In equation (1) the summation ~ means that the 
h=O 

summation is to be taken over one half of the reciprocal 
net (e.g. h=0(1)oo, k=-cxz(1)+oo ,  / = - o o ( 1 ) + o o ) ,  
while the borderline terms are assumed to be properly 
weighted. 
Since Zhb, = rh. h ~ ,  we have 

2 ~ +~o 
T(U,V) = -V-- 2 ~ '  %h, {cos 2u(h'.  U + h. V) 

h=O h'=--co 

+cos 2z~[(-h-h'). U+h. V)]} 

4 ~o +co 
= -V~ ~ '~.' ~hht COS 2~[h. V-h. (U/2) 

h=0 h'=--c~ 

x cos 2zc[h'. U + h .  (U/2)] (2) 

* We thank the referee for sending us a copy of a recent 
article by Simonov & Weissberg (1970). These authors have 
calculated the signs of the Fourier coefficients of a Hoppe 
section and they have used those signs to synthesize an Fobs 
map. We ourselves derived a quantitative relation between 
triple products, single Patterson vector and structure factor, 
which enabled us to locate a Hoppe section. 

Changing the summation from Y.~,, to ~h' SO that Thh, 
and rh, h--~ appear separately again, (2) gives 

T(U,V)=  ~ cos 27rh V -  U 
h=O " 2 -  

+oo Thh' COS 2~h'.  U 
x 2: (3) 

If we define 

Dh(U) ~- V h'=-¢¢ 
rbh' cos 2zch'. U (4) 
cos 27r[h. (U/2)] 

then Dh(U ) is the Fourier coefficient of a hypersection 
of the double Patterson at any value of U. The double 
Patterson can thus be written as 

2 ~. Dh(U) cos2zch ( V - ~ )  T(U,V)= -V 
h=O 

(5) 

which means that for a centrosymmetric structure any 
hypersection at a fixed value of U has a centre of symme- 
try at V = U/2, and also, that a hypersection at a fixed 
value of V has a centre of symmetry at U = V/2. 

Relation between hyperseetion and structure 

Rearranging (4) we get 
+ 0 o  

Fh ~ Fh'Fh-~7 cos 27rh'. U. 
Dh(U) = V cos 27rh. (U/2) h'=-oo 

(6) 

u u u u u U 
I i  ]D ID 

(a) t-~ t-~ r-,, ~ ~ 

I I I 

I I I 

t, t, ~, 

f-'X f"'X f 'X  ~ ,--, 

fu fu fu fL fL fL I I I 
I I I 

o 0 0 0 0 0 o 
zfM(h')fU(h~) Y'fU(h')ft(~) Yfk(h,)fk(h-7"~, ) 
h' h' h' 

Fig. 1. (a) A centrosymmetrical structure, with two kinds of atoms, with form factors fM and fL respectively. (b) The reduced 
structure, based on the sixfold vector U, with atoms halfway in between atoms of the original structure. 
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N o w  

N 

F h, cos 2zch'. U=  ~ ½J~(h') [cos 2zch'. (rj + U) 
j = l  

+ cos 2~zh'. (rj.- U)] 

= Xh,, say. 

X h, is the Fourier coefficient of a structure with half- 
weight atoms at u - U  and r j + U .  According to the 

-~-oo 

1 ~. Xh,Fh-¥- 6 is the Fourier convolution theorem V h'=-oo 

coefficient of index - h  of the product of the electron 
density with the 'density' of which the Fourier coef- 
ficients are X h. Consequently this product has peaks 
at rj if r j - r i = U  or r j - r ~ = - U .  As the product 
density at rj equals ½0(rd~o(rj) the form factors of the 
pseudo atoms in this product function are 

-11-oo 

1 ~ J~(h')fj(h + h') = ½gii(h) . 
2V h '=-~  

(7) 

Formula (6) can then be written as 

F h ~ exp 2nih. (r j+U) + exp 2nih.  rj 
Dh(U) - ~  j~--1 giy(h) cos 2zch. (U/2) 

(8) 
provided that we restrict the summation over the atoms 
j so that rj + U = r~. This becomes 

with 
Dh(U) = Fh G h (9a) 

N 

j = !  
r / + U  =r i  

(9b) 

According to (9a) a hypersection of the double Pat- 
terson can be regarded as a convolution of the structure 
itself (Fourier coefficients Fh) and a reduced structure 
(Fourier coefficients Gh). As follows from (9b), this 
reduced structure has atoms halfway between those 
atoms, that are a vector U apart in the original struc- 

ture. An atom in this reduced structure, in between the 
original atoms i and j, has a form factor gij(h) as is 
given by (7). 

As an example Fig. l(a) shows a one-dimensional 
structure consisting of two kinds of atoms M and L 
with form factors fM and f c  respectively. The corre- 
sponding reduced structure, for a sixfold vector U, 
contains atoms with form factors 

(1/V)~wfM(h') fM(h+h') ,  ( l /V) ~ w f M ( h ' ) f L  ( h + h  ') 

and (1/V)~h, fL(h') fL(h+h ') 

respectively [Fig. l(b)]. 

It should be remarked that our reduced structure 
(based on a vector U) is closely related to the set of all 
centres of symmetry at position vectors Rm, each 
provided with a weight Win, as they occur in a minimum 
function over a multiple Patterson vector U, expressed 
by Germain & Woolfson (1966) in their formula (3) 

NI2 

Vh=2Ksfh ~ Wm cos 2nh.  Rm 
m = l  

which resembles our formula (9a) which, taking into 
account the fact that the reduced structure is centro- 
symmetric, can be written as: 

N/2 

Dh(U)=2Fh ~ gij(h) c o s 2 n h . ( r j + U ) .  (9c) 
j = l  

r / + U  =r i  

If U is a single vector between atoms M, G h reduces to 
G h = g~j(h) because the corresponding reduced structure 
has only one peak, viz. at the origin [Fig. 2(b)]. Equa- 
tions (6), (7) and (9a) then finally give the relation we 
are aiming at 

M ' M Fa= [1 /~h ' f ,  ( h ) f i  (h+h')]  

+oo FnFh,Fh__4_~ cos 2nh ' .  U 
× h'=~-~o . . . . . . .  COS 2 ~ [ h .  (U/2) ]  , (10) 

,> 

o o  o O  O Q  0 O 0 0 o  o o  
<rj 

I 

Fig. 2. (a) A centrosymmetrical structure, as in Fig. (la), with a single vector drawn. (b) The reduced structure, based on the single 
vector U, containing only one atom, with form factor ~.h, fM(h')fM(h +h'), at the centre of symmetry. 
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or statistically, 

+oo 

~, IFhFh'Fh-¥-~l (e+-e-)  cos 2 = h ' .  U 
Fh ~ h ' ~ - - ~  (11) 

~ h , f M ( h ' ) f M ( h + h  ') cos 27r[h. (U/2)] 

where P + - P - = t a n h  e3/e3IU~Uh, Un--4-~] according to 
Cochran & Woolfson (1955).* 

Equations (10) and (11) express a relation between 
triple products, a single Patterson vector U and a 
structure factor. With the aid of  (11) the sign of  a struc- 
ture factor can be estimated directly f rom the triple 
products if  a single vector is known. We will show how 
this formula  can be used both to find the position of  a 
single vector and to calculate the signs of  the structure 
factors. 

* Scanning through the unit cell the position of a heavy 
atom M (at U/2) might be used as structural information to 
increase the reliability of the triple product sign probability P+ 
(Kroon & Krabbendam, 1970). Then P~ is a function of U. 

It should be remarked that if  U is a single vector, 
the hypersection of the double Patterson at this value 
of U will contain the structure only once, which cor- 
responds to the fact that the reduced structure contains 
only one a tom at the centre of symmetry.  This hyper- 
section is known as the Hoppe section (Hoppe, 1957). 

It is useful to know what happens to the left-hand 
side of equation (10) if  U is not  a single vector, but a 
multiple vector. In that case we obtain directly from 
(6), (7) and (9a): 

FhFh,FV#- ~ cos 2rch' . U 
FnG~= h '= -~  (12) 

~ h ' f i ( h ' ) f i ( h  + h') cos 2r&. (U/2) 

where G~, is the structure factor of  the reduced struc- 
ture, now with atoms with possible form factors 

~h, fM(h')fM(h + h ' ) /~h , fM(h ' ) fM(h  + h ' ) ,  

~h" fM(h')fL(h + h ' ) /~h ' fM(h ' ) fM(h  + h ' ) ,  

~h, f L(h') f L(h + h ' ) /~h , fM(h ' ) fM(h  + h ' ) .  

¢ 
0 --~ 0"5 

0"5 ~ 
(a) 

c 
0 ~ 0"5 

0"5 

K NO 

(c) 

¢ 
0- -~  

® 

0"5 

c 
0 ----~ 

0"5 

{ 

(b) 

0 
0 

0.5 

(a) 

Fig. 3. (100) Projection of hexamethylenediamine dihydrobromide. (a) The Patterson function. (b) R,4(U), showing minima at 
the positions of the single bromine vectors and minima in circles round the double bromine vectors. The single and double 
bromine vectors are indicated with closed and open circles respectively. Contour lines at 0.50, 0.45 and 0.40. (c) RB(U); the 
minima corresponding to single bromine vectors indicated with K and L, the additional minima with M and N. (d) Rc(U); the 
minima at the positions of the single bromine vectors are now definitely lower than the other minima. Contour lines at 0.80, 
0.70, 0.60, 0.50 and 0.40. 
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Space groups of hypersections 

According to (9a) the Fourier coefficients D h of a 
hypersection of the double Patterson at a fixed value 
of U can be written as Dh = FhGh. If hi, h2, • • • etc. are 
reciprocal vectors related by symmetry, then there are 
relations between Fhx, Fh,,. etc. However, as Gh is 
the Fourier coefficient of ilae reduced structure, of 
which the space group is in general P] ,  the same 
relations will not exist for Ghl, Gh2.. .  etc., not even 
for I Ghl[, I Gh2l,... etc. Consequently there are no rela- 
tions between Dhv Dh2,... etc. ; the space group_ of the 
corresponding hypersection is therefore P 1. 

However, if U is a single vector then the corre- 
sponding hypersection (Hoppe section), being a con- 
volution of the structure and the reduced structure 
with only one peak at the origin, has the same space 
group as the original structure. 

Occasionally it may happen that for some U a 
reduced structure belongs to a space group for which 
the symmetry relations in reciprocal space are Ghx = 
Gh2= . . .  etc. In that case the symmetry relations 
between the Dh's are the same as those between the 
Fh'S; this special hypersection then belongs to the same 
space group as the original structure. 

Application to sign determination 

We take as an example the (100) projection of hexa- 
methylenediamine dihydrobromide (Binnie & Robert- 
son, 1949), with plane group pgg. Our purpose is to 
find a bromine-bromine single vector and calculate the 
structure factors by means of equation (11). In order 
to find a single vector, the vector U in (11) is scanned 
over discrete points through the asymmetric unit of 
the Patterson space. The vector U, which gives the 

best agreement between structure factors F~kt, as cal- 
culated by (11) and the observed structure factor F~) kt, 
is apt to be a single vector. For this purpose we define: 

RA= (13) 
~k~tlF~kt] 

in which k=0(1)kmax, 1=/min(1)/max. We admit in (13) 
only those F0gz's for which ,in (11) cos 2rch. (U/2) 
exceeds a certain small value, so as to avoid extremely 
large values of Fgkt. 

RA as a function of U [Fig. 3(b)] shows minima at the 
positions of the two bromine single peaks but, un- 
fortunately, also comparable minima in circles round 
the double bromine peaks [note the similarity with the 
Patterson function in Fig. 3(a)]. This is explained by 
the fact that in (13) we compare absolute values of 
Fgkt and Fgkt, SO that we are really comparing a Pat- 
terson of the structure with a Patterson of the hyper- 
section at U. If U is a double bromine-bromine vector 
then the corresponding hypersection contains the struc- 
ture twice, that is, the original structure superimposed 
on its image, originated by inversion of the original 
structure through some pseudo centre. Consequently 
the Patterson of this hypersection will resemble the 
Patterson of the original structure (Krabbendam & 
Kroon, 1971), and F~kl will resemble F~k l, except for a 
scaling factor. As the hypersection contains the struc- 
ture twice, F~kt is, on the average, larger than Fg~k ~, so 
that an improvement in the scaling factor can be 
expected in the direction of the edge of the double 
bromine-bromine peak. This explains the additional 
minima round the double peaks in Fig. 3(b). 

In order to get round this difficulty we devise for 
plane group pgg a function Re, defined as 
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Fig. 4. Explanation of the additional minima M and N from Fig. 3(c). (a) RB(U) (dotted lines) superimposed on the structure, 
with its origin at the bromine atom Brl. Bromine atoms: large bold circles, light atoms: small circles. The additional minima 
M and N correspond to the Brl-C vectors X and Y, of which the midpoints (black dot and black square, respectively) are close 
to the cell edges of the structure. (b) R~(U) superimposed on the structure, with its origin at the bromine atom Br3. The mini- 
mum M also corresponds to the Br3-C vector X, the midpoint of which is again approximately on the cell edge (black dot). 
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~, ,  ~ t lFgk , -  ( -  1)k+lF~l 
RB = . (14) 

l~k ~l ([F~k,I + IFg~l) 

Its definition is based upon the fact that the symmetry 
relations between Fokl and F0~, valid in plane group 

C _ pgg, will show up again in F~kt and Fok l, if U is a single 
vector. And indeed, RB(U) has minima at the positions 
of the bromine single peaks [K and L in Fig. 3(c)] but, 
remarkably, also at the intersections of lines drawn 
parallel to the axes through the minima K and L. An 
explanation is given in Fig. 4. Fig. 4(a) shows the 
function RB(U) superimposed on the structure, with 
its origin on a bromine atom Brl. The function RB(U) 
has a minimum at the position of Brz, a bromine atom 
which is related to Brl by a centre of symmetry. As it 
happens there is also a light atom at each of the two 
extra minima (M and N) in RB. The atoms at M and N 
are situated such that a vector X from Brl to M and a 
vector Y from Brl to N have their midpoints (black 
dot and black square, respectively) approximately on 
one of the cell edges of the structure. 

Fig. 4(b) shows the function RB(U) superimposed 
on the structure, but now with its origin at the bromine 
atom Br3. The function RB(U) has a minimum at the 
position of Br4, a bromine atom which is related to 
Br3 by a centre of symmetry. There is also a light atom 
at the minimum in RB which we have indicated by 
M. Again the vector X, appearing for the second time, 
has its midpoint (black dot) on one of the cell edges. 
As the vector X fits twice in the assymetric unit, the 
reduced structure, based on this vector X, contains 
two independent atoms, one indicated with a black 
dot in Fig. 4(a), the other with a black dot in Fig 4(b), 
both situated halfway along the vector X. The vector 
Y fits only once in the asymmetric unit, so its reduced 
structure contains only one independent atom [black 
square in Fig. 4(a)], halfway along the vector Y. Both 
reduced structures belong approximately to plane 
group prom. The hypersections corresponding to these 
reduced structures belong (see our remark at the end 
of the last section) to the original plane group pgg, a 
fact which explains the occurrence of the minima M 
and N in RB(U). Indeed, the locus of all points in 
RB(U), which can give rise to such a minimum, are 
lines parallel to the cell edges through K and L. 

As the undesirable peaks in RA(U) have no relations 
to the undesirable peaks in RB(U), they might disap- 

pear in a function Rc, which is a combination of R.4 
and RB. 

We define 

~ k  ~,llFgkll--½{lFgk,+(--1)k+~FgkTI}l 
R c =  (15) 

where k = 0(1)kmax, l=  0(1)/max. 
Rc as a function of U [Fig. 3(d)] resembles the func- 

tion RA very closely [Fig. 3(b)]; only the minima at the 
positions of the single bromine peaks are now definitely 
lower than the other minima. Signs of F~kl, calculated 
on the basis of a single vector thus obtained, using 
formula (11), do not differ from those calculated by an 
ordinary structure factor calculation from the heavy 
atom position, but the agreement between F~)kl and 
F~kl is significantly better if F~k z is calculated by (11) 
(RA = 0.37 against the conventional R = 0.53). 

It should be noted that in practice it is not necessary 
to calculate the full equation (11) for every value of U 
in the scanning process. According to (11) 

FN= g---(-0~f° ~ , ,  1&,12cos 2~zh' . U . (16) 

Thus F~ is proportional to the Patterson function at U; 
values of U for which F~ is too large or too small con- 
cerning the expected height of a single peak, can be 
disregarded. 

Calculations were carried out with a program written 
by Mr F. B. Vollmann. The authors are grateful to 
Professor A. F. Peerdeman and to Ir. W. A. K. Maas 
for critical reading of the manuscript. 
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